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Most of the currently used models for droplet heating and evaporation are based on the assumption that
droplets are perfect spheres. At the same time the shapes of many observed droplets in engineering appli-
cations are far from spherical. We have studied the influence of droplet non-sphericity on their heating
and evaporation, approximating droplet shapes as prolate and oblate spheroids. The previously devel-
oped exact solutions to the heat and mass transfer equations for the gas phase surrounding a spheroidal
droplet have been used as boundary conditions for the solutions to these equations in the liquid phase.
The temperature gradients inside and at the surface of the droplets, and the changes in their shape during
the heating and evaporation process have been taken into account. The effects of surface tension and dro-
plet motion on droplet heating and evaporation are ignored. The results are applied to the analysis of
heating and evaporation of an n-dodecane fuel droplet in Diesel engine-like conditions. The effect of dro-
plet non-sphericity is shown to be relatively small for the evaporation time of these droplets with initial
eccentricities 2=3 6 e 6 1:5.
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1. Introduction

Most of the models for droplet heating and evaporation devel-
oped so far have been based on the assumption that droplets are
perfect spheres [1]. At the same time the shapes of most actually
observed droplets in engineering and environmental applications
are far from spherical [2,3]. The effects of droplet deformation
are generally investigated assuming that the droplet shapes can
be approximated as prolate or oblate spheroids [4].

To the best of our knowledge, the heat conduction equation
inside a spheroidal body (droplet) was first solved analytically
more than 135 years ago [5]. This solution, however, turned out
to be too complex for most practical applications. In most cases
this problem (and the related problem of mass transfer inside the
body) has been investigated based on the numerical solutions to
heat transfer (and mass diffusion) equations [6,7].

The problem of heat/mass transfer inside spheroidal bodies,
considered in the above-mentioned papers, is complementary to
the problem of heat/mass transfer between the ambient gas and
a spheroidal body, taking into account their relative velocity. The
latter problem has been considered in numerous papers based on
the numerical solutions to the momentum and heat transfer equa-
tions in the ambient gas in the ellipsoidal coordinate system. The
analyses of [8–12] were based on the assumption that the body
surface temperature was fixed. Juncu [13] took into account
changes in body temperature with time, while assuming that there
is no temperature gradient inside the body (the thermal conductiv-
ity of the body was assumed to be infinitely high).

These approaches are equally applicable to solid bodies and
droplets. In the case of droplets, however, both heating and evap-
oration processes should be taken into account. Grow [14] was per-
haps the first to solve the problem of heat and mass transfer in the
vicinity of spheroidal particles assuming that their relative veloci-
ties are equal to zero, although she considered coal chars rather
than droplets. One of the main limitations of that paper is that both
mass and heat transfer equations were presented in the form of the
Laplace equations, which implies that the effects of the Stefan flow
from the surface of the particles were ignored. The latter effects
were taken into account in the exact solutions to the mass and heat
transfer equations in the gas phase around a spheroidal droplet in
the model suggested in [4]. In that paper it was assumed that the
temperatures at all points on the surface of the droplet are identi-
cal and constant, and that the droplet’s shape remains the same. A
combined problem of spheroidal droplet heating and evaporation,
similar to the one studied in [4], was considered in [15]. As in [4],
the authors of [15] based their analysis on the solution to the
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Nomenclature

A area [m2]
a function defined by Eq. (3)
ar half the size of a spheroid perpendicular to the z-axis

[m]
az half the size of a spheroid along the z-axis [m]
B function defined by Eq. (56)
c specific heat capacity [J/kg K]
Dv binary diffusion coefficient of vapour in air [m2/s]
F mass flux
G non-dimensionalised evaporation rate
h convective heat transfer coefficient [W/(m2 K)]
H specific enthalpy
J diffusive mass flux
k thermal conductivity [W/(m K)]
K function defined by Eq. (59)
Le Lewis number [–]
M molar mass [kg/mol]
_mev average mass evaporation rate [kg/s]
_m local mass evaporation rate [kg/s]
n unit vector normal to the droplet surface [–]
P gas pressure [bar]
Psat saturated vapour pressure [bar]
q heat flux due to evaporation [W/m2]
~q heat flux [W/m2]
Q heat rate [W]
R effective droplet radius [m]
Ru universal gas constant [J/(K mol)]
s s ¼ 1 for prolate spheroids, s ¼ �1 for oblate spheroids
S function defined by Eq. (5)
t time [s]
tdiff relative droplet evaporation time [%]
T temperature [K]
T0 initial uniform droplet temperature [K]

U Stefan velocity of the mixture of vapour and air [m/s]
vn normal velocity of the evaporating surface of the droplet

[m/s]
W correction factor defined by Eq. (47) [–]
x; y; z Cartesian coordinates [–]
Y mass fraction [–]
Z1; Z2 functions defined by Eq. (60)

Greek symbols
C evaporation enhancement defined by Eq. (8)
e eccentricity (droplet deformation parameter) [–]
h angle [rad]
g function defined by Eq. (11)
n;u;u ellipsoidal coordinates [–]
q density [kg/m3]
U function defined by Eq. (2)
f function defined by Eq. (11)

Subscripts
0 initial
a air
c critical
def deformed (oblate or prolate)
eff effective
f liquid fuel
g gas mixture (air and vapour)
p at constant pressure
s surface of droplet
sph spherical
tot mixture of gases, i.e. vapour and ambient air
v vapour
1 ambient gas (far from the droplet)
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species conservation equation in the gas phase and assumed that
the thermal conductivity of droplets is infinitely large. In contrast
to [4], the authors of [15] took into account the relative velocities
of droplets, assuming that the dependence of the Nusselt and Sher-
wood numbers on the Reynolds and Prandtl numbers is the same
as for spherical droplets. Also, they took into account the time
dependence of droplet temperatures and sizes, although their anal-
ysis was focused on oblate droplets only.

As follows from the above brief overview, a self-consistent
model of heating and evaporation of spheroidal droplets is far from
being developed. We believe, however, that the results presented
in [4] could be considered as a starting point for constructing this
model, at least for droplets that are almost spherical (slightly
deformed spheres). In this paper we present the development of
this new model.1

Our model is based on several simplifications, the most signifi-
cant of which is the assumption that the droplet remains spheroi-
dal during the heating and evaporation process, although the
parameters of the spheroid, including its eccentricity, are allowed
to change with time. The changes in the droplet parameters are
attributed to the heating and evaporation processes only, not to
the droplet oscillations driven by the surface tension. These
assumptions do not allow us to apply the model to realistic moving
and oscillating droplets, but we believe that our model can be con-
sidered an important step in this direction. It removes many
assumptions made in previously proposed models [4]. Note that
1 The preliminary results were presented in our conference paper [16]; some minor
mistakes made in the formulae and plots in the latter paper will be corrected.
the effect of oscillations on the heating and evaporation process
can be ignored if the characteristic period of droplet oscillation is
much longer than the droplet heating and evaporation time [4].
This is expected in extreme operating conditions that include low
values of surface tension, large droplets, low latent heat of evapo-
ration and/or high ambient temperatures.

The main ideas of the model described in [4] and its possible
generalisations are summarised in the next section.
2. Gas phase

We start with a brief overview of the analysis reported in [4],
which was focused on exact solutions to the mass and heat transfer
equations in the gas phase around a spheroidal droplet, assuming a
uniform Dirichlet boundary condition along the droplet surface.
The model will be generalised to account for non-uniform condi-
tions on the droplet surface, assuming that the gradients of tem-
perature and vapour density perpendicular to the droplet surface
are much greater than those along the droplet surface.

In [4] a droplet was assumed to be mono-component and the
following steady-state equation for the vapour mass fraction
(Yv ¼ qv=qtot) was solved in the gas phase:

r qtotUYv � qtotDvrYvð Þ ¼ 0; ð1Þ

where qtot ¼ qv þ qa is the density of the mixture of vapour (with
density qv ) and ambient air (with density qa), U is the Stefan veloc-
ity of the mixture of vapour and air, Dv is the diffusion coefficient of
vapour in air.
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Eq. (1) was solved using spheroidal coordinates n;u;u defined
as:

x ¼ aU � ðnÞ sin ðuÞ cos ðuÞ;
y ¼ aU � ðnÞ sin ðuÞ sin ðuÞ;
z ¼ aU þ ðnÞ cos ðuÞ;

8<
:
where

U�ðnÞ ¼ en � sðeÞe�n

2
; sðeÞ ¼ signðe� 1Þ; e ¼ az=ar ; ð2Þ

2az and 2ar are the sizes of the spheroid along and perpendicular to
the z-axis, respectively (e > 1 and s ¼ 1 for prolate spheroids,
0 < e < 1 and s ¼ �1 for oblate spheroids).2 It can be shown that

the coordinate u is linked with h ¼ arctan
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
=z

h i
by the rela-

tion tanu ¼ e tan h, which is valid for both prolate and oblate
spheroids.

In this coordinate system the spheroidal surface is defined by
the equations:

n ¼ n0 ¼ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffi
es þ 1
es � 1

r
; a ¼ R0

1� e2
�� ��1=2

e1=3
; ð3Þ

where R0 is the radius of a sphere which has the same volume as the
spheroid.

The authors of [4] solved Eq. (1) assuming that the values of Yv
and all other scalar properties are the same along the whole sur-
face of the droplet and equal to Yv ¼ Yvs, and Stefan velocity and
diffusive fluxes are perpendicular to the droplet surface

U ¼ ðUn;0;0Þ;rYv ¼ dYv
dn ;0;0

� �� �
. These assumptions allowed the

authors of [4] to simplify Eq. (1) to:

qtotUn
dYv
dn

¼ Dv

aS2
d
dn

qtotU�ðnÞdYvdn

� �
; ð4Þ

where

S2 � S2ðn;uÞ ¼ U�ðnÞ U2
�ðnÞ cos2 uþU2

þðnÞ sin2 u
h i1=2

: ð5Þ

Note that Eq. (4) is different from the one on which the analysis of
[15] was based (see their Eq. (10)). The latter equation was the
Laplace-type equation which is valid only in the case when the
effect of the Stefan flow is ignored.

Eq. (4) was solved assuming that at large distances from the
droplet Yv ¼ Yv1 ¼ const, and the condition qtot ¼ qv þ qa ¼
const is valid (see [1] ). The assumption qtot ¼ qv þ qa ¼ const
was relaxed in [17].

Average evaporation mass rate ( _mev ) and local evaporation
mass rate per unit area (vapour mass flux) (d _m=dA) were found
as [4]:

_mev ¼ 4pR0qtotDvC eð Þ ln 1� Y vð Þ
v1

1� Y vð Þ
vs

; ð6Þ

d _m
dA

¼ e2=3

1� e2j jS2 n;uð ÞR0

qtotDvC eð Þ ln 1� Y vð Þ
v1

1� Y vð Þ
vs

; ð7Þ

where

CðeÞ ¼ 1� e2
�� ��1=2

e1=3

1

p�2 arctan
ffiffiffiffiffi
1þe
1�e

p� 	 oblate

1

ln
ffiffiffiffiffi
1þe
e�1

p
þ1

� 	
�ln

ffiffiffiffiffi
1þe
e�1

p
�1

� 	 prolate:

8><
>: ð8Þ
2 Note that in [11,12] prolate and oblate spheroids were defined as those with e < 1
and e > 1, respectively; the same definition is used in Fig. 1 of [10].
As mentioned earlier, in [4] it was assumed that Yvs ¼ const. In
the general case, these formulae could be applied when
Yvs ¼ YvsðuÞ provided that the gradients of Yv in the direction per-
pendicular to the droplet surface are much larger than those along
the surface. This condition is expected to be satisfied when the
spheroid is a slightly deformed sphere (e is close to 1).

The generalisation of the approach suggested in [17] to the case
of spheroidal droplets has not been considered so far to the best of
our knowledge.

Under the above-mentioned assumptions, the energy conserva-
tion equation was presented as (see Appendix A):

qtotUcpvrT ¼ kgr2T; ð9Þ
where cpv is the vapour specific heat capacity at constant pressure
and kg is the thermal conductivity of gas (a mixture of fuel vapour
and air in the general case). Note that this equation is different from
the one used in [4] (see Appendix A for the details).

This equation was solved using spheroidal coordinates for uni-
form temperature distributions along the droplet surface, assum-
ing that the temperature at a large distance from the droplet is
equal to T1 ¼ const. The solution for the temperature distribution
in the gas phase was obtained in the form:

T ¼ T1 � Ts

1� g
gfðn;eÞ � g

 �þ Ts; ð10Þ

where

g ¼ exp � 1
Lev

ln
1� Yv1
1� Yvs

� �
; ð11Þ

fðn; eÞ ¼
p�2arctan enð Þ

p�2arctan
ffiffiffiffiffi
1þe
1�e

p� 	 oblate

ln enþ1ð Þ�ln en�1ð Þ
ln eþ

ffiffiffiffiffiffiffiffi
e2�1

pð Þ prolate;

8>><
>>:

Lev ¼ kg= qtotcpvDv
� 	

is the Lewis number for fuel vapour. Eq. (10) is
identical to one derived by [4] when c in [4] is replaced with cpv . The
assumption that Yv is the same along the whole surface of the dro-
plet, used for the derivation of Eq. (4), implies that the tangential
component of the temperature gradient along the surface of the
droplet is nil. This is consistent with the assumption made by [4]
that droplet thermal conductivity is infinitely large.

Considering heat transfer from an evaporating droplet, essen-
tially the same analysis as presented above can be repeated, using
the weaker assumption that the temperature gradients in the
directions perpendicular to the droplet surface are much larger
than along this surface (cf. the generalisation of the analysis by
[4] for Yv discussed earlier). In this case g becomes a function of
u in the general case (recall that Yvs ¼ YvsðTsÞ).

Expression (10) allows us to find the local convective heat
transfer coefficient h based on the following formula:

h ¼ �
�kgrT

��
n¼n0

��� ���
T1 � Tsj j : ð12Þ

Although the value of h was not explicitly calculated in [4], this
calculation follows in a straightforward way from the previous
analysis by these authors:

h ¼ �kgg lng
R0 ð1� gÞ

e1=3

p�2arctan
ffiffiffiffiffi
1þe
1�e

p� 	
 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1�e2�sin2 u

� �r oblate

e1=3

ln eþ
ffiffiffiffiffiffiffiffi
e2�1

pð Þ½ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
e2�1

þsin2 u

� �r prolate

8>>>>><
>>>>>:

ð13Þ

where g is defined by Expression (11). This equation can be rear-
ranged as:
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h ¼ �kgg lng
R0 ð1� gÞ e

1=3

ffiffiffiffiffiffiffiffi
1�e2

p

p�2 arctan
ffiffiffiffiffi
1þe
1�e

p� 	
 � oblateffiffiffiffiffiffiffiffi
e2�1

p

ln eþ
ffiffiffiffiffiffiffiffi
e2�1

pð Þ½ � prolate

8><
>:
2
64

3
75

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2 tan2 h

1þ e4 tan2 h

s
:

ð14Þ
Perhaps the most important limitation of the model sum-

marised above is that it does not take into account the changes
in the shape of the droplets during the evaporation process. A sim-
plified model, taking into account these changes and predicting the
time evolution of redistribution of the temperature inside droplets
is described in the next section.

3. Liquid phase

For the liquid phase, the transient heating of an evaporating
droplet is described by the following equation:

qf cf
@T
@t

�rðkfrTÞ ¼ 0; ð15Þ

where kf ; qf , and cf are thermal conductivity, density and specific
heat capacity, respectively, of liquid fuel. The analytical solution
for the gas phase around a spheroidal droplet, presented in [4]
and discussed above, is used for the boundary condition at the dro-
plet surface:

�nð�kfrTÞ ¼ qþ hðT1 � TÞ at n ¼ n0; ð16Þ
where n is the unit vector normal to the droplet surface, the convec-
tive heat transfer coefficient h is defined by (14) and q is the heat
flux due to evaporation to be specified later.

We take into account the decrease in the droplet size due to
evaporation but not the effect of thermal swelling. The shape of
the droplet is recalculated at each time step assuming that the dro-
plet remains spheroidal. The dimensions of the droplet along and
perpendicular to the z-axis are described by the following ordinary
differential equations

a0rðtÞ ¼ � 1
qf

d _m
dA

����
u¼p=2

; a0zðtÞ ¼ � 1
qf

d _m
dA

����
u¼0

; ð17Þ

and initial conditions

arð0Þ ¼ ar0; azð0Þ ¼ az0;

where evaporation mass flux d _m
dA varies along the droplet surface; it

is defined by Eq. (7). Temperature, T, and the vapour density, qv , at
the droplet surface are linked by the ideal gas law

qvs ¼
MvPsat

RuTs
: ð18Þ

We assume that qv1 ¼ 0. The ideal gas law is also used for air den-
sity near the droplet surface and in ambient conditions:

qas ¼
MaðP � PsatÞ

RuTs
; qa1 ¼ MaP

RuT1
; ð19Þ

where P is the ambient gas pressure and Psat is the saturated vapour
pressure, Ru is the universal gas constant, Mv and Ma are molar
masses of the vapour and the ambient air, respectively.

Our model is based on the assumption that at each stage of
heating and evaporation, the droplet shape can be approximated
by that of a spheroid but with time dependent ar and az. The initial
distribution of the temperature is assumed to be uniform inside
the droplet, T ¼ T0, and the temperature in the ambient gas, T1,
is assumed to be constant.

The effects of surface tension and droplet oscillations on heating
and evaporation processes are ignored. It is assumed that the dro-
plet does not move relative to air.
4. Parameters of the model and numerical method

Our analysis will be focused on Diesel fuel droplet heating and
evaporation in Diesel engine-like conditions, in view of our specific
interest in modelling the processes in these engines (the results of
our previous analysis are quite general and are expected to be used
in a much wider range of applications). Diesel fuel is approximated
by n-dodecane C12H26, although the limitations of this approxima-
tion are well known [18]). Following [19,20], we define the satu-
rated vapour pressure, the diffusion coefficient of vapour in air,
thermal conductivity of liquid fuel, the specific heat capacity of liq-
uid fuel and fuel vapour, and the heat flux due to evaporation for n-
dodecane as

Psat� ¼ exp 8:1948� 7:8099 300=Tsð Þ � 9:0098 300=Tsð Þ2
� �

ðbarÞ;
ð20Þ

Psat ¼
Psat� when Ts 6 0:99Tcr

exp 15ðTs � 0:99TcrÞ=0:99Tcrð ÞPsat� when Ts > 0:99Tcr

�
;

ð21Þ

Dv ¼ 5:27 � 10�6ðTeff=300Þ1:583P�1 ðm2=sÞ ðP in barÞ; ð22Þ

Teff ¼ 2Ts þ T1
3

; ð23Þ

kf ¼ 0:1405� 0:00022ðT � 300Þ ðW=m KÞ; ð24Þ

cf ¼ 2:18þ 0:0041ðT � 300Þ ðkJ=kg KÞ; ð25Þ

cpv ¼ 0:2979þ 1:4394ðTeff=300Þ
þ 0:1351ðTeff=300Þ2 ðkJ=kg KÞ; ð26Þ

q ¼ 37:44 � 103ðTcr � TÞ0:38qfvn; ð27Þ

where Teff and Tcr (in K) are the effective (using the 1/3 rule) and
critical temperatures, vn is the normal velocity of the recession of
the evaporating surface of the droplet (see Appendix B),

vn ¼ v rnr þ vznz; ð28Þ

v r ¼ �rðr2a0r=a3r þ z2a0z=a
3
z Þ; vz ¼ zðr2a0r=a3r þ z2a0z=a

3
z Þ; ð29Þ

nr ¼ �r=a2r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2=a4r þ z2=a4z

p
;

nz ¼ �z=a2z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2=a4r þ z2=a4z

p
:

8><
>: ð30Þ

Assuming that the contribution of fuel vapour to the thermal
conductivity of the mixture of vapour and air can be ignored, we
can approximate empirical data given in [21] by the following
function:

kg ¼ 0:0036þ 0:0252ðTeff=300Þ
� 0:00189ðTeff=300Þ2 ðW=m KÞ: ð31Þ

The values of other parameters used in our analysis are pre-
sented in Table 1.

Eqs. (15)–(17) were solved numerically until the droplet effec-
tive radius, R, dropped below 5 � 10�8 m. They were integrated
using the finite-element-based PDE modules of COMSOL Multi-
physics including Moving Mesh (ALE). We ensured that the solu-
tions remained unaffected by the mesh size and time steps
below certain minimal values.



Table 1
The values of the parameters used in the analysis.

Parameter Value Notes

e0 1.5 (2/3) Initial droplet deformation for prolate
(oblate) droplet

R0 10�5 m Initial effective droplet radius
qf 744.11 kg/m3 Liquid n-dodecane (C12H26) density
T0 300 K Initial droplet temperature
T1 700 K Ambient gas temperature
P 30 bar Ambient gas pressure
Ru 8.3154 J/(K mol) Universal gas constant
Mv 170.33 � 10�3 kg/mol Molar mass of vapour
Ma 28.97 � 10�3 kg/mol Molar mass of ambient air
Tcr 659 K Critical n-dodecane temperature
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5. Results

In this section, we consider the results of numerical solutions to
Eqs. (15)–(17), describing heating and evaporation of a stagnant
spheroidal droplet surrounded by air. Functionality testing of the
model was carried out to ensure that the solution for spherical
droplets, using the previously developed approach [22], agrees
with the predictions of the newly developed model in the limiting
case when spheroidal droplets become spherical (e ! 1) (see
Appendix C).

In Fig. 1, the temperature profiles along the vertical cross sec-
tion of a prolate evaporating droplet at four time instants are
shown. The initial droplet deformation parameter is assumed equal
to e0 ¼ 1:5 and the initial effective radius R0 ¼ 10�5 m. As follows
from Fig. 1B, the temperatures inside the droplet and at its surface
increase over time and reach their highest values at the spheroid’s
extremities (poles) where the surface curvature is the greatest. As a
result of higher evaporation in these regions of the droplet surface,
the shape of the droplet becomes more spherical with time. Similar
Fig. 1. Temperature profiles along the vertical cross section of a prolate droplet at four in
initial temperature, T0 ¼ 300 K; ambient gas temperature, T1 = 700 K; gas pressure, P ¼
qualitative behaviour is shown in Fig. 2 for an evaporating oblate
droplet with initial deformation parameter e0 ¼ 2=3 and an initial
effective radius R0 ¼ 10�5 m.

Fig. 3A shows a schematic of a prolate droplet with an initial
deformation parameter e0 ¼ 1:5; ar and az are the radial and axial
semi-axes. Fig. 3B-D demonstrates how characteristics of the pro-
late (solid lines) and oblate (dashed lines) spheroids change with
time. Fig. 3D shows that the evaporation at the droplet surface
regions with higher curvature (e.g. point B in Fig. 3A for a prolate
droplet) is higher than at point A (by up to 700%). Higher evapora-
tion means that droplet eccentricity will move towards 1 (see
Fig. 3B). This suggests that the evaporation of a droplet causes it
to become more spherical. In Fig. 3C, we demonstrate that local
temperatures at point A (TA) and point B (TB), of the deformed dro-
plet surface can vary noticeably (by up to more than 35 K). Using
(17) for constant temperature along the droplet surface, we obtain,
a0z=a

0
r ¼ e. Thus, once the temperature along the droplet surface

becomes uniform (or close to uniform), the ratio a0z=a
0
r ¼ e. Further-

more, it can be shown analytically that the droplet shape remains
ellipsoidal when the droplet temperature is uniform (see Appendix
D). Note that in our analysis this temperature is not uniform in the
general case (see Fig. 3B).

Fig. 4 shows how the effective radius of prolate (solid), oblate
(dashed) and spherical (dotted) droplets changes with time due
to evaporation (curves for prolate and oblate droplets are indistin-
guishable). This figure demonstrates that prolate and oblate dro-
plets, with initial effective radius R0 ¼ 10�5 m and initial
deformation parameters e0 ¼ 1:5 and e0 ¼ 2=3, evaporate slightly
faster (by 1.4%) than a spherical droplet with the same initial vol-
ume (same R0).

Note that the results shown in Figs. 1(D) and 2(D) should be
viewed with caution as for very small droplets kinetic, molecular
dynamics and even quantum chemical effects, ignored in our anal-
ysis, are likely to become important [20,23,24].
stants of time: (A) t ¼ 0 s, (B) t ¼ 0:001 s, (C) t ¼ 0:004 s, (D) t ¼ 0:004885 s. Droplet
30 bar.



Fig. 2. Temperature profiles along the vertical cross section of an oblate droplet at four instants of time: (A) t ¼ 0 s, (B) t ¼ 0:0001 s, (C) t ¼ 0:004 s, (D) t ¼ 0:004885 s. Drop
initial temperature, T0 ¼ 300 K; ambient gas temperature, T1 = 700 K; gas pressure, P ¼ 30 bar.

Fig. 3. (A) A schematic of a prolate droplet with an initial deformation parameter e0 ¼ 1:5; ar and az are the radial and axial droplet semi-axes; (B) ratio e ¼ az=ar versus time
(s) for prolate (solid) and oblate (dashed) droplets; (C) absolute value of the temperature difference (in K) at points A and B of prolate (solid) and oblate (dashed) droplets
versus time (s); TA and TB are surface temperatures at points A and B, respectively; (D) ratio a0z=a

0
r vs time for prolate (solid) and oblate (dashed) droplets. Droplet initial

temperature, T0 ¼ 300 K; ambient gas temperature, T1 ¼ 700 K; gas pressure, P ¼ 30 bar.
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Fig. 4. Effective radii of prolate (solid), oblate (dashed) and spherical (dotted)
droplets versus time during the heating and evaporation processes. Droplet initial
temperature, T0 ¼ 300 K; surrounding gas temperature, T1=700 K; gas pressure,
P ¼ 30 bar.
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5.1. Parameter sensitivity analysis

We analysed the sensitivity of the model to deviations in the
key parameters shown in Table 1. We introduce tdiff characterising
the relative evaporation time difference between spherical and
deformed droplets,

tdiff ¼ ðtsph � tdefÞ=tsph � 100%; ð32Þ

where tsph and tdef are evaporation times of the spherical and
deformed droplets, respectively. Fig. 5 shows how tdiff is influenced
by changes in parameters R0 (its default value is 1 � 10�5 m; the
range of values [2 � 10�6 m, 2 � 10�5 m] was considered), T1 (its
default value is 700 K, the range of values [500 K, 900 K] was con-
sidered), T0 (its default value is 300 K, the range of values [300 K,
500 K] was considered) and P (its default value is 30 bar, the range
of values [5 bar, 60 bar] was considered).

The results of our analysis demonstrate that tdiff changes only in
the range 1–3%; there is no visible dependence of tdiff on R0 for
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Fig. 5. The results of sensitivity analysis for four parameters: R0; T1; T0 and P. The relat
(prolate (solid) and oblate (dashed) spheroids), tdiff , are shown to be small (less than 3%
prolate droplets. Thus, the evaporation time difference tdiff shows
almost no sensitivity to variations in these parameters and tdiff
for spherical and deformed droplets was shown to be small.

6. Conclusions

A new mathematical model for heating and evaporation pro-
cesses of a liquid spheroidal (prolate and oblate) droplet is
described.

The previously obtained exact solutions to the heat and mass
transfer equations for the gas phase surrounding a spheroidal dro-
plet were used as boundary conditions for the solutions to these
equations in the liquid phase. The temperature gradients, inside
and at the surface of the droplets, and the changes in their shape
during the heating and evaporation process were taken into
account, assuming that the gradients of temperature perpendicular
to the droplet surface are much larger than those along this sur-
face. The results were applied to the analysis of heating and evap-
oration of an n-dodecane (approximation of Diesel fuel) droplet in
Diesel engine-like conditions.

It is shown that local temperatures can vary noticeably along
the droplet surface (by up to more than 35 K) and significant
changes in local evaporation rates (by up to 700%) were observed.
Droplet heating is shown to be more intense in the regions with
greatest curvature.

Higher evaporation at the droplet surface in these regions led to
a decrease in droplet eccentricity (e ¼ az=ar) for prolate and an
increase for oblate droplets. In both cases this eccentricity is shown
to tend towards 1 at the end of the evaporation process (i.e. the
droplet becomes more spherical).

The effect of droplet non-sphericity on the evaporation time of
droplets was shown to be relatively small for the range of param-
eter values under consideration.
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Appendix A. Energy equation with inter-diffusional terms

We consider an energy transport process in a mixture of N
gases. The steady-state energy equation for this mixture, taking
into account inter-diffusional terms (but ignoring work and dissi-
pation terms), can be presented as [25]:

rj qtotUjHtot
� 	 ¼ �rj~qj �rj

XN
i¼0

HiJ
ið Þ
j ; ð33Þ

where Hi is the specific enthalpy of species i, J ið Þ
j is the jth compo-

nent of the diffusive mass flux of species i; Htot; ktot and qtot are
the enthalpy, thermal conductivity and density of the gaseous mix-

ture, respectively Htot ¼
PN

i¼0HiY
ið Þ

� �
; Uj and ~qj ¼ �ktotrjT are the

jth components of the velocity vector of the gaseous mixture and
the heat flux, respectively.

Let us rewrite Eq. (33) in the form:

rj qtotUj

XN
i¼0

HiY
ið Þ þ

XN
i¼0

HiJ
ið Þ
j

" #
¼ rj ktotrjT

� 	
: ð34Þ

The left-hand side (LHS) of Eq. (34) can be rewritten as

rj qtotUj

XN
i¼0

HiY
ið Þ þ

XN
i¼0

HiJ
ið Þ
j

" #
¼ rj

XN
k¼0

Hi qtotUjY
ið Þ þ J ið Þ

j

� �
: ð35Þ

Introducing the total mass flux (sum of diffusive and convective
fluxes)

F ið Þ
j ¼ qtotUjY

ið Þ þ J ið Þ
j ; ð36Þ

the right-hand side of Eq. (35) can be presented as:

rj

XN
i¼0

Hi qtotUjY
ið Þ þ J ið Þ

j

� �
¼ rj

XN
i¼0

F ið Þ
j Hi: ð37Þ

This allows us to present Eq. (33) as

rj

XN
i¼0

F ið Þ
j Hi ¼ rj ktotrjT

� 	
: ð38Þ

This is the equation ‘H’ in Table 19.2-4 of [25] (
PN

i¼0F
ið Þ
j Hi in our

paper is the same as
PN

i¼0N
ið Þ
j
�hi in [25], �hi is the partial molar

enthalpy of species i).
In the case of a binary mixture of a vapour and a gas (F vð Þ ¼ F 1ð Þ

and F gð Þ ¼ F 0ð Þ), Eq. (38) is simplified to

rj F vð Þ
j Hv þ F gð Þ

j Hg

� �
¼ rj ktotrjT

� 	
: ð39Þ

Taking into account that the net ambient gas flux is zero (convective

flux compensates for the diffusion flux), F gð Þ ¼ 0
� �

, we have:

F vð Þ
j ¼ qtotUjY

ðvÞ þ JðvÞj : ð40Þ
Remembering that [1]:

JðvÞj ¼ qtotUjY
ðgÞ; ð41Þ

we can rewrite Eq. (39) as:

rjqtotUjHv ¼ rj ktotrjT
� 	

: ð42Þ
Remembering that

Hv ¼ cpvT þ Hv0 ð43Þ
and the mass conservation equation (rU ¼ 0) we obtain,

qtotUjcpvrjT ¼ rj ktotrjT
� 	

: ð44Þ
Eq. (44) is identical to Eq. (10). This equation is the same as given in
[4] if c in the latter paper is replaced with cpv .

The solution to Eq. (44) yields (as in [26], except for the value of
cpv ) the non-dimensionalised heat rate,

~Qs ¼ Qs

4pR0kT1
¼

~Ts � 1
e~GCðeÞ � 1

 !
~G; ð45Þ

where ~Ts ¼ Ts
T1

is the non-dimensionalised surface temperature,
~G ¼ _mev cpv

4pR0ktot
is the non-dimensionalised evaporation rate,

Qs ¼ �4pR2
0ktotrnT , and rnT is the normal component of the tem-

perature gradient. The analysis of the case without inter-
diffusional terms (considered in [4]) would yield the same equation

as (45) but with ~G0 ¼ _mev cpg
4pR0ktot

¼ ~G cpv
cpg
:

~Q 0
s ¼

~Ts � 1
e~G0CðeÞ � 1

 !
~G0 ¼

~Ts � 1

e
~G
cpv
cpg

CðeÞ � 1

 !
~G
cpv
cpg

¼
~Ts � 1

e~GCðeÞ � 1

 !
~G

cpv
cpg

e~GCðeÞ � 1

e
~G
cpv
cpg

CðeÞ � 1

" #
¼ ~QsW; ð46Þ

where

W ¼ cpv
cpg

e~GCðeÞ � 1

e
~G
cpv
cpg

CðeÞ � 1
ð47Þ

is a correction factor. If ~G is small,

e
~GCðeÞ ¼ 1þ ~GCðeÞ þ Oð~G2Þ ð48Þ

and W ¼ 1þ Oð~G2Þ. Thus, the solution to Eq. (10), considered in this
paper, becomes close to the solution considered in [4].

Appendix B. Derivation of Eq. (29)

The normal velocity of the recession of the droplet evaporating
surface used in Eqs. (27)–(29) can be presented as:

vn ¼ v rnr þ vznz; ð49Þ

v r ¼ �rðr2a0r=a3r þ z2a0z=a
3
z Þ; vz ¼ zðr2a0r=a3r þ z2a0z=a

3
z Þ; ð50Þ

Note that the normal velocity of the recession of the droplet evap-
orating surface is related to the local mass evaporating flux, d _m

dA , as:

vnðuÞ ¼ � 1
qf

d _m
dA

ð51Þ

(cf. Eq. (17)).
We assumed that the evaporating droplet shape remains spher-

oidal. At each time step, we define the sizes (az and ar) and their
time derivatives (a0

z and a0r) along and perpendicular to the z-axis,
using (17), and then calculate the evaporation flux at other points
on the spheroidal droplet, using interpolation.

To derive Eq. (27), let us follow a point at the droplet surface
(r1; z1) that moves to a point (r2; z2) at the deformed droplet surface
due to evaporation when time changes from t1 to t2, assuming that
t1 is close to t2. Taking into account the fact that points (r1; z1) and
(r2; z2) are at the surfaces of spheroids with semi-axes ar1; az1 and
ar2; az2, respectively, we obtain,

r1
ar1

� �2
þ z1

az1

� �2
¼ 1;

r2
ar2

� �2
þ z2

az2

� �2
¼ 1;

ar2
ar1

¼ az2
az1

:

8>>>><
>>>>:

ð52Þ

Assuming that

Dar ¼ ar2 � ar1; Daz ¼ az2 � az1 ð53Þ



V.S. Zubkov et al. / International Journal of Heat and Mass Transfer 108 (2017) 2181–2190 2189
are small, and omitting second order terms in (52), we obtain

r2 � r1 ¼ �r1
r1
ar1

� �2
Dar þ z1

az1

� �2
Daz


 �
;

z2 � z1 ¼ �z1
r1
ar1

� �2
Dar þ z1

az1

� �2
Daz


 �
:

8>>><
>>>:

ð54Þ

Dividing both parts of Eq. (54) by t2 � t1 and remembering that
t2 � t1 ! 0, we obtain:

v rjðr1 ;z1Þ ¼ �r1ðr21a0r1=a3
r1 þ z21a

0
z1=a

3
z1Þ;

vzjðr1 ;z1Þ ¼ zðr21a0r1=a3r1 þ z21a
0
z1=a

3
z1Þ: ð55Þ

These expressions are identical to those given in Eq. (29).
Appendix C. Predictions of the new model and the one
described in [22] for a spherical droplet

In what follows, the predictions of the model described in [22]
for a spherical droplet are compared with the predictions of our
model in the limit when the droplet deformation parameter
(eccentricity) is equal to 1 (spherical droplet) and the other param-
eter values are as given in Table 1. Fig. 6 shows the effective radius
of a droplet and its surface temperature, predicted by the model
described in [22] (dashed) and our model (solid) versus time. In
our model the droplet was assumed to be spherical when the
deformation parameter e was equal to 1:001. Fig. 6 demonstrates
a reasonably good agreement between the predictions of both
models, the difference between the results turned out to be less
than about 3%. These differences are comparable with the accuracy
of the models used in our analysis (the model used in [22] was
based on the analytical solution to the heat transfer equation
inside droplets at each time step, while our model was based on
the numerical solution of this equation; the approximations of
the transport and thermodynamics properties of the fluids used
in both models were slightly different).
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Appendix D. A simplified analysis of droplet shape evolution

Consider a point on a spheroidal surface r1; z1ð Þ, where

r1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ y21

q
, and evaluate the time derivative of the following

parameter,

B ¼ r21
a2r

þ z21
a2z

: ð56Þ

Note that initially B ¼ 1. Differentiating (56) with respect to time
gives

1
2
dB
dt

¼ r1 _r1a2r � r21ar _ar
a4r

þ z1 _z1a2z � z21az _az
a4z

: ð57Þ

Note that for a spheroid we have the following relations:

r1 ¼R0e�1=3 sin h1; z1 ¼ R0e2=3 cos h1;
ar ¼R0e�1=3; az ¼ R0e2=3:

The time derivative of r1; z1ð Þ can be calculated as:

_r1; _z1ð Þ ¼ � _mev

4pR2
0qf

K h1ð Þ nr;nzð Þ; ð58Þ

where nr; nzð Þ are the radial and z-component of the unit vector nor-
mal to the surface:

nr;nzð Þ ¼ e2=3 sin h; e�1=3 cos h
� 	

e�2=3 cos2h þ e4=3sin2h
� �1=2 ;

K h1ð Þ ¼ e2=3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2 � 1ð Þ sin2 h1ð Þ

q ; ð59Þ

_mev
4pR20

is the average evaporation flux at the surface of the droplet. Eq.

(58) can be rewritten in a more explicit form as:

_r1; _z1ð Þ ¼ � _mev

4pR2
0qf

e5=3 sin h1; e2=3 cos h1
� 	
1þ e2 � 1ð Þsin2h1
� �3=2 :
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The time derivatives of the half-axes are estimated as:

_ar ¼� v h ¼ p
2

� 	
qf

¼ � _mev

4pR2
0qf

K
p
2

� �
¼ � _mev

4pR2
0qf

e�1=3

_az ¼� v h ¼ 0ð Þ
qf

¼ � _mev

4pR2
0qf

K 0ð Þ ¼ � _mev

4pR2
0qf

e2=3:

Thus the values of ar ; az; r1 and z1 and their derivatives can be
presented as:

ar ¼R0e�1=3; az ¼ R0e2=3

_ar ¼� Z1e�1=3; _az ¼ �Z1e2=3

r1 ¼R0e�1=3 sin h1; z1 ¼ R0e2=3 cos h1
_r1 ¼� Z2e5=3 sin h1; _z1 ¼ �Z2e2=3 cos h1;

where

Z1 ¼ _mev
4pR20qf

;

Z2 ¼ _mev
4pR20qf

1
1þ e2�1ð Þsin2h1ð Þ :

8<
: ð60Þ

Substituting this expression into Eq. (57) gives:

1
2
dB
dt

¼ r1 _r1a2r � r21ar _ar
a4r

þ z1 _z1a2z � z21az _az
a4z

¼ e�1=3 sin2 h1
�Z2e4=3 þ e�2=3Z1

R0e�1 þ e2 cos2 h1
�Z2 þ Z1

R0e2

¼ 1
R0

_mev

4pR2
0qf

sin2 h1 1� e2
� 	� 1

1þ e2 � 1ð Þ sin2 h1
� �þ 1

0
@

1
A ¼ 0:

Since B ¼ 1 at the start of the process, it remains equal to 1 during
the development of the process. Hence:

B ¼ r21
a2r

þ z21
a2
z
¼ 1

at any time. Thus the shape of the droplet remains spheroidal.
Note that this result refers to isothermal spheroids, which are

different to the ones considered in our paper in the general case.
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